Extending healthy life span--from yeast to humans.
نویسندگان
چکیده
When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
منابع مشابه
Genetics, life span, health span, and the aging process in Caenorhabditis elegans.
As a tool for measuring the aging process, life span has been invaluable in dissecting the genes that modulate longevity. Studies over the past few decades have identified several hundred genes that can modify life span in model organisms such as yeast, worms, and flies. Yet, despite this vast amount of research, we still do not fully understand how the genes that affect life span influence how...
متن کاملSir2 mediates longevity in the fly through a pathway related to calorie restriction.
Calorie restriction can extend life span in a variety of species including mammals, flies, nematodes, and yeast. Despite the importance of this nearly universal effect, little is understood about the molecular mechanisms that mediate the life-span-extending effect of calorie restriction in metazoans. Sir2 is known to be involved in life span determination and calorie restriction in yeast mother...
متن کاملCaloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span.
Long-term caloric restriction (CR) is a robust means of reducing age-related diseases and extending life span in multiple species, but the effects in humans are unknown. The low caloric intake, long life expectancy, and the high prevalence of centenarians in Okinawa have been used as an argument to support the CR hypothesis in humans. However, no long-term, epidemiologic analysis has been condu...
متن کاملA molecular mechanism of chronological aging in yeast.
The molecular mechanisms that cause organismal aging are a topic of intense scrutiny and debate. Dietary restriction extends the life span of many organisms, including yeast, and efforts are underway to understand the biochemical and genetic pathways that regulate this life span extension in model organisms. Here we describe the mechanism by which dietary restriction extends yeast chronological...
متن کاملExtending life-span in C. elegans.
The life-span of the nematode Caenorhabditis elegans can be extended by at least six different mechanisms, including calorie restriction, reduced Ins/IGF-1 signaling, germline ablation, food sensing amphid ablation, mitochondrial deficiency, and decreased temperature. Reduced Ins/IGF-1 signaling and calorie restriction can also increase the life-span of flies and mice. The Brevia "Healthy anima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 328 5976 شماره
صفحات -
تاریخ انتشار 2010